【例1】刘女士今年48岁,她说:“我有两个女儿,当妹妹长到姐姐现在的年龄时,姐妹俩的年龄之和比我到那时的年龄还大2岁。”问姐姐今年多少岁?
A.23 B.24
C.25 D.不确定
【解析一】典型年龄问题:由“妹妹长到姐姐现在的年龄时”可知姐妹之间存在年龄差,但是具体差几岁我们不清楚,所以设年龄差为a岁,即a年后妹妹长到姐姐现在的年龄,设姐姐今年为x岁,则根据“姐妹俩的年龄之和比我到那时的年龄还大2岁”得出(x+a)+x=(48+a)+2,解得x=25岁,所以选择C选项。
【解析二】此题就是典型的单侧极限法的应用,因为姐妹之间的年龄差值未知,所以我们讨论极限情况:最小值为0,最大值不能确定。所以我们可以直接讨论姐妹年龄差为0岁,即双胞胎时的情况:设姐姐今年为x岁,则根据“姐妹俩的年龄之和比我到那时的年龄还大2岁”得出x+x=48+2,解得x=25岁,所以选择C选项。
比较下两种解法,后者是更侧重考察实际的理解分析能力,更能体现出一个公务员的内在素质,而且也比前者大大的缩短了解题时间。我们来通过下面这个例题再来体会下。
【例2】有两只相同的大桶和一只空杯子,甲桶和乙桶分别装一样多的牛奶和糖水,先从甲桶内取出一杯牛奶倒入乙桶,再从乙桶取出一杯糖水和牛奶的混合倒入甲桶,问,此时甲桶内的糖水多还是乙桶内的牛奶多?
A.无法判定 B.甲桶糖水多
C.乙桶牛奶多 D.一样多
【解析】此题如果按照常规的浓度问题来求解,很多考生只能放弃,应为太浪费时间,但是如果我们考虑杯子的极值:最小值不能设定为0,最大值可以与溶液的容积一样大。所以题目中的第一步可以转换为完全混合,第二步将混合液体倒回,故甲桶内的糖水和乙桶内的牛奶一样,所以选择D选项。
这种单侧极限思想的应用非常广泛,比如也可以应用于类似的构造类问题中。
公众号 | 农信社考试信息 | 微博 | 高顿教育农信社 |
抖音 | 行测每日练练练 | 微信 | 金融君 |
小红书 | 高顿教育-农信社&农商行考试 |